Where and How Does MiniBooNE Get its Protons?

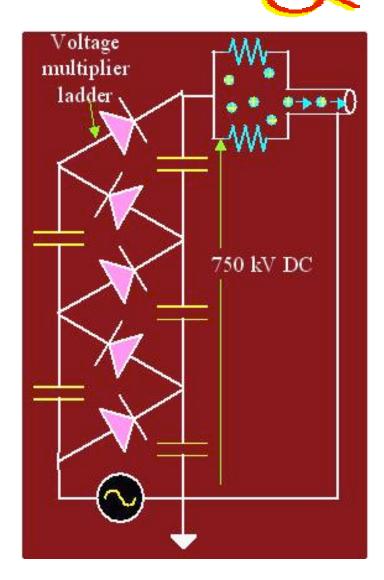
(It's a mystery!)

Peter Kasper

The Fermilab Accelerator Components

- Preaccelerator
 - ⇔ H- ions from 0 to 750 keV
- Linac
 - ⇒ H- ions from 0.75 to 400 MeV
- Booster
 - ⇒ Protons from 0.4 to 8 GeV
 - ⇒ Beam to MiniBooNE
- Will not discuss the other accelerators:-
 - ⇒ Main Injector: 8 120 GeV (and Recycler storage ring)
 - ⇒ Tevatron: 0.12 0.98 TeV
 - Antiproton Source (and Accumulator storage ring)

The Fermilab Accelerator Complex



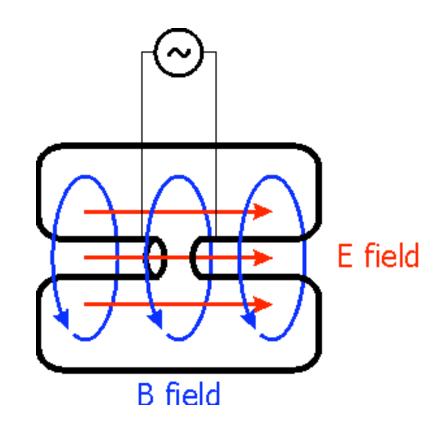
The Preaccelerator

PROTON SOURCE DEPARTMENT


- Consists of a source housed in an electrically charged dome...
 The Cockcroft-Walton
- The source converts H₂ gas to H⁻ ions
- 480 V ac current and a series of capacitors and diodes is used to charge the dome to -750 keV

The ionized gas is accelerated through a column from the charged dome to the grounded wall.

The Cockcroft-Walton Preaccelerator

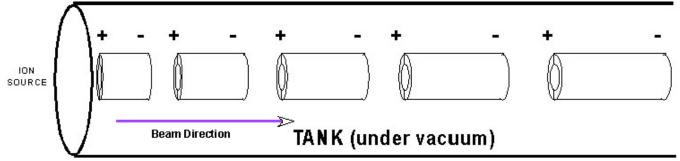

Diodes

The H₂ Bottle

The Linac: a Series of RF Cavities

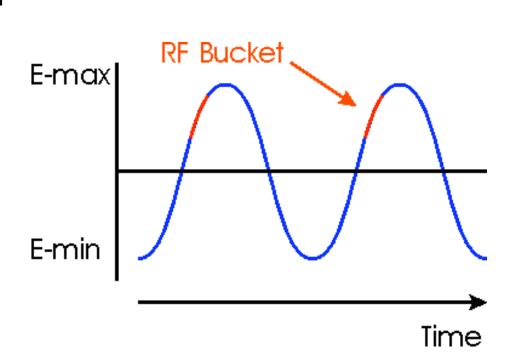
- An applied AC current induces an oscillating magnetic field which in turn induces and oscillating electric field
- The cavity acts as an LCR circuit and hence has a well defined resonant frequency
 - Noise is thereby suppressed

The Linac: 0.75 - 200 MeV



Inside

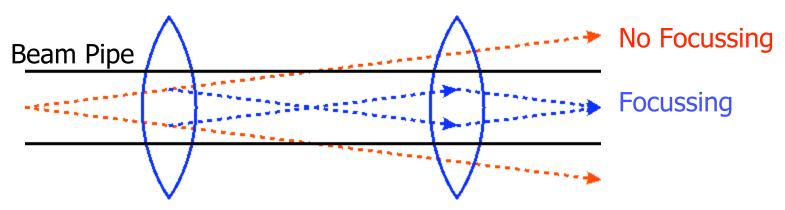
Outside


The Linac: 200 - 400 MeV

- Low energy Linac RF is 201 Mhz
- High energy Linac RF is 805 MHz
- The gap spacings vary so that the "nominal" particle is inside each successive gap at the same point on the RF phase curve
- Optimal phase region is < E-max
 - ⇒ Fast particles arrive early and see less field
 - Slow particles arrive late and see higher field
 - ⇒ Beam becomes bunched

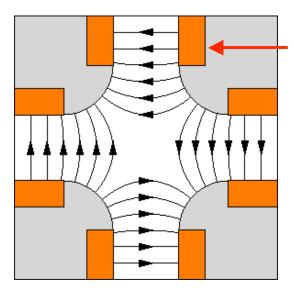
Buckets and Bunches

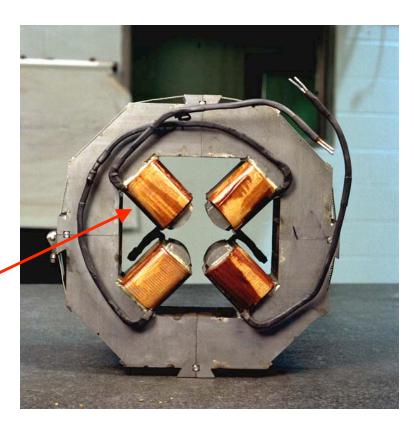
- The part of the RF phase curve in which particles will be accelerated is called an RF bucket
- Only particles in synch with the RF buckets will be accelerated
- The particles in an RF bucket is called a bunch


Magnets: How We Control Beams

- Beams are transported through vacuum beam pipes with the aid of magnet strings which steer the beam and keep it inside the pipe.
- Dipole Magnets
 - Uniform field B
 perpendicular to
 beam direction Bends
 beam in an arc of
 radius R = P/B
 - ⇒ P is beam momentum
 - ⇒ B is field strength

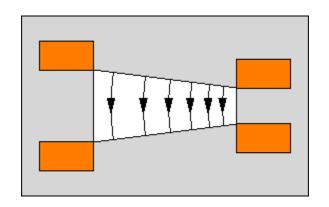
The Need for Focussing

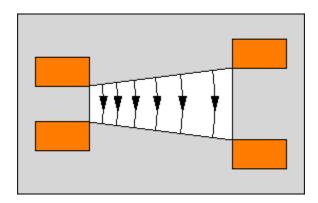

- Accelerators and beam lines with only dipole magnets don't work
- Perturbations to a beam particle's direction or momentum from the nominal will cause the particle to eventually be lost
 - e.g. any small vertical component to its motion will cause it to drift up (or down) until it hits the beam pipe.
- Quadrupole Magnets provide focussing similar to optical lenses


Quadrupole Magnets

PROTON SOURCE DEPARTMENT

- Field strength varies linearly with vertical or horizontal displacement from beam center.
 - Horizontal focussing implies vertical defocussing
 - Magnet pairs of opposite polarity give net focussing


Coils


Linac Quadrupole Magnet

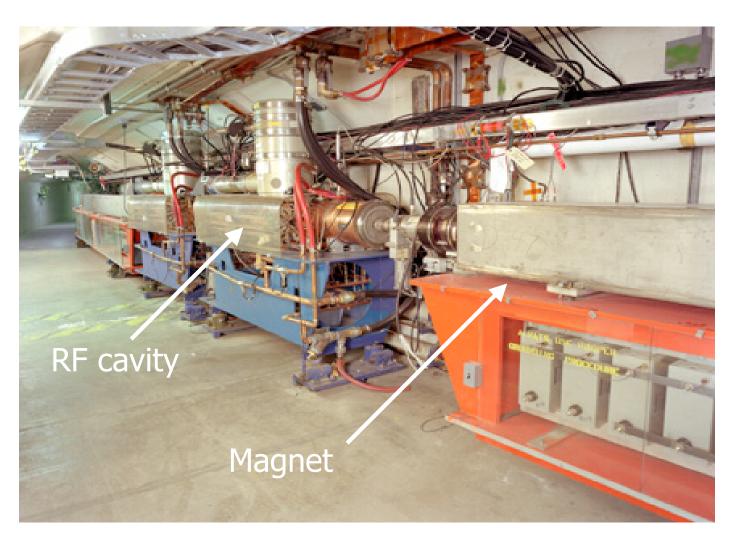
Combined Function Magnets

- The main Booster magnets are combined function
 - ⇒ The resulting fields are a linear combination of a dipole field and a quadrupole field.
 - ⇒ Relative quadrupole/dipole strengths are defined by the angle of the wedge shaped aperture

Horizontally focussing

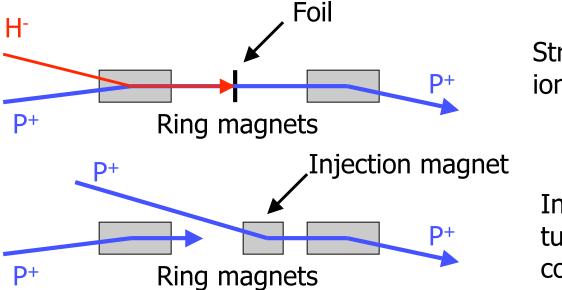
Horizontally defocussing

The Booster


- Consists of a series of magnets and RF cavities arranged in a circle 75.5 meters in radius
- The magnets keep the beam circulating around the ring while the RF cavities accelerate it.

 - ⇒ Final: K.E. = 8 GeV, v = 0.994 c
 - ⇒ RF varies from 37.8 to 52.8 MHz as v increases
- A Booster batch:
 - ⇒ Length (time): $T = 2 \square * 75.5 / (0.994 c) = 1.6 \square s$
 - \Rightarrow # Bunches: T/(52.8*1E6) = 84 = harmonic number

Inside the Booster Tunnel



Getting the Beam into the Booster

PROTON SOURCE DEPARTMENT

- Why does the Linac accelerate H⁻ ions whereas all the other machines accelerate protons?
 - Multiple Booster turns worth of Linac beam can be injected simultaneously
 - → Higher beam intensities

Stripping foil converts H⁻ions to protons.

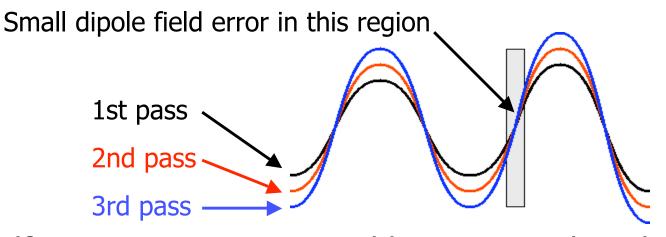
Injection magnet has to turn off before beam completes one full turn

The Acceleration Process

- The Booster has 96 main bending magnets each of which bends the beam by 360/96 = 3.75 degrees
 - ⇒ Low power "trim" magnets are used to make corrections to the beam orbit.
- B field increases as P increases
 - ⇒ The main Booster magnets form part of an LCR circuit which resonates at 15 Hz
 - ⇔ Magnet current varies sinusoidally
 - ⇒ Time between booster pulses is 1/15 = 67 msec
 - ➡ Linac beam is injected into the Booster at the bottom of the sine wave and extracted 33.3 msec later

The Acceleration Process II

- The rate of increase in beam momentum has to match the increase in the magnet field strength
- The voltage applied to the RF system varies through the ramp in order to ensure P/B remains constant
 - ⇒ A feedback system is used to do this (RPOS)
 - ⇒ The horizontal beam position is measured at some convenient point in the ring
 - The RF voltage is adjusted such that the beam is held fixed at that point
 - → Voltage is increased if the beam drifts inwards
 - → Voltage is decreased if the beam drifts outwards

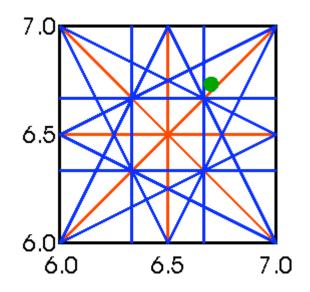

Betatron Oscillations

- The quadrupole magnets cause beam particles to oscillate about the nominal beam orbit
- The number of oscillations that a particle undergoes in one turn around the machine is called its tune (□)
 - ⇒ The vertical/horizontal tune is the number of vertical/horizontal oscillations
 - The natural tunes for a given machine are defined by the arrangement and field strengths of the quadrupole magnets
 - ⇒ They can be (and need to be) slightly different
 - \rightarrow Booster: $\square_{x} = 6.7$ and $\square_{y} = 6.8$

Instabilities Due to Field Errors

PROTON SOURCE DEPARTMENT

Integer tunes are unstable w.r.t. dipole field errors

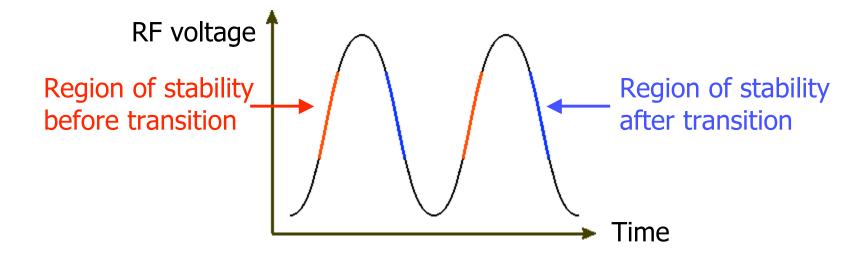


Half integer tunes are unstable w.r.t. quadrupole field

errors and so on ...

Instabilities Due to Field Errors II

- These instabilities are known as tune resonances
- In the general case tune values driven by resonances are given by : $m \square_k + n \square_v = k$
 - ⇒ m, n, and k are integers
 - \Rightarrow |m| + |n| is the order of the resonance
- Low order resonances are stronger than high order resonances


- 1st, 2nd, and 3rd order resonances are generally fatal
- Since the particles in the beam typically have different momenta they also have different tunes - tune spread
 - In order to avoid losses an accelerator needs to operate in a tune region which avoids all low order resonance lines.

Transition

- Higher momentum particles
 - ⇒ Get bent less by the dipole magnets
 - ⇒ Travel in larger radius orbits
- The path length differences remain constant as the beam momentum increases
- The velocity differences decrease as the particles become more relativistic
- Transition is the energy at which these two effects cancel
- Below transition high momentum particles reach the RF cavities 1st
- Above transition low momentum particles reach the RF cavities 1st

Transition II

- The RF phase has to be changed in order to maintain the beam in stable RF buckets
- The transition energy represents a point of instability in the acceleration cycle and is determined by the size of the ring and the strength of the magnets
 - For the Booster K.E. transition = 3.26 GeV

Other Sources of Instabilities

PROTON SOURCE DEPARTMENT

- ⇒ Bunched beam represents an AC current
- Induces delayed image fields on the walls of the beam pipe
- Induced wake field can interact coherently with trailing bunches or trailing particles of the same bunch to produce coherent motion
- Results in all kinds of bizarre resonances

Space Charge

Electrostatic forces tend to blow the beam apar

⇒ Creates	large	momentum	spread □	large tune	spread □	losses

Effect is	reduced	at high	energy	due to	Iorentz	contraction	of	E-
fields								

Conclusion

It's a miracle that machines work at all!